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Abstract—We propose an algorithm for segmentation of grayscale
images. Our algorithm computes a solution to the convex, uncon-
strained minimization problem proposed by T. Chan, S. Esedoḡlu, and
M. Nikolova in [1], which is closely related to the Chan-Vese level
set algorithm for the Mumford-Shah segmentation model. Up to now
this problem has been solved with a gradient descent method. Our
approach is a quasi-Newton method based on the lagged diffusivity
algorithm [2] for minimizing the total-variation functional for image
denoising [3]. Our results show that our algorithm requires a much
smaller number of iterations and less time to converge than gradient
descent, and is able to segment noisy images correctly.
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I. INTRODUCTION

THE Mumford-Shah energy model is among the best-
known models for image segmentation. It finds a piece-

wise smooth approximation u of a grayscale image f defined
on the region D by minimizing the following functional:

F (u, Γ) = H1(Γ) + λ

∫
D

(u(x)− f(x))2 dx

+ µ

∫
D\Γ

|∇u(x)|2 dx. (1)

The first term is the 1-dimensional Hausdorff measure of the
set of shape boundaries Γ, and accounts for the smoothness of
the boundaries. The second term is the L2-distance between u
and f , and ensures the result is close to the original image f .
The third term is responsible for the minimization of the L2-
norm of the gradient of u, which smooths the image outside
the set of shape boundaries Γ.

A simpler version is obtained by restricting u to be piece-
wise constant, and taking on only two values, as considered
by T. Chan and L. Vese [4]:

F (c1, c2,Σ) =
∫

D

|∇χΣ(x)| dx

+λ

∫
D

[
χΣ(x)(c1−f(x))2 +(1−χΣ(x))(c2−f(x))2

]
dx.

(2)

When Σ ⊂ D has a rectifiable boundary, the first term is the
length of ∂Σ. The second term corresponds to the second term
of (1), with u having the value c1 on Σ and c2 on D\Σ. Note
that the third term of (1) is zero in this context.

Rick Chartrand is with the Mathematical Modeling and Analysis Group,
Los Alamos National Laboratory, Los Alamos, email: rickc@lanl.gov

Valentina Staneva is with the Applied Mathematics & Statistics Department,
Johns Hopkins University, Baltimore, email: staneva@ams.jhu.edu

Even with this simplification, it is difficult to minimize (2):
the minimization is done over three unknown variables, with
Σ ranging over subsets of the plane. The Chan-Vese active
contour model [4] is a reformulation that can be handled by
standard level-set methods [5]. In this model the boundary Γ
is represented as the 0-level set of a function φ. Then the
Mumford-Shah energy is rewritten in the following way:

FCV (c1, c2, φ) =
∫

D

|∇Hε(φ(x))| dx

+ λ

∫
D

Hε(φ(x))(c1 −Hε(φ(x)))2 dx

+ λ

∫
D

(1−Hε(φ(x)))(c2 − f(x))2 dx,

(3)

where Hε is a regularization of the Heaviside function H , and
c1 and c2 are the average intensity values of the two regions
into which the image is split during the segmentation.

The functional (3) is nonconvex, and the solution can
depend on the initial φ that is used. T. Chan, S. Esedoḡlu,
and M. Nikolova propose a convex alternative in [6]. For fixed
c1, c2, a minimizer of F (c1, c2, ·) in (2) can be obtained by
solving the convex, constrained minimization problem

min
u

F (u) =
∫

D

|∇u(x)| dx

+ λ

∫
D

[
(c1 − f(x))2 − (c2 − f(x))2

]
u(x) dx,

(4)

subject to 0 ≤ u(x) ≤ 1, and then thresholding the solution:
Σ = {x ∈ D : u(x) ≥ µ}, for any µ outside a set of
measure zero. (Note how substituting u = χΣ gives a quantity
differing from (2) by a constant depending only on c2 and
f .) One can then update c1 and c2, and iterate the process:
c1 =

∫
Σ

f(x) dx/|Σ| and c2 =
∫

D\Σ f(x) dx/|D \ Σ|. They
then further show that (4) can be replaced by an equivalent,
convex, unconstrained problem:

min
u

F (u) =
∫

D

|∇u(x)| dx

+ λ

∫
D

[
(c1 − f(x))2 − (c2 − f(x))2

]
u(x) dx

+ α

∫
D

max{0, 2|u(x)− 1/2| − 1} dx,

(5)

provided α > λ
2 ‖(c1 − f)2 − (c2 − f)2‖L∞(D). The third

term penalizes u having values outside [0, 1]. The result is a
much simpler optimization problem, and is similar to standard
models for total variation regularization. Since it is convex and
unconstrained, it can be solved by a gradient descent method,



which is what is used in [6]. In their numerical results, they
obtain near-binary solutions, allowing image segmentation
without thresholding. The advantage of the gradient descent
method is that it can be easily implemented. However, it
requires many iterations to converge. In our work we propose
a faster algorithm for the same problem.

II. THE PROPOSED ALGORITHM

To solve the segmentation problem we adapt the lagged
diffusivity method [2] for minimizing the ROF functional. The
similarity between the two models is that they both require
minimization of the total variation of the image plus a data
fidelity term. This relation to the denoising algorithm allows
us to apply to the Chan-Esedoḡlu-Nikolova model a technique
similar to the one used by C. Vogel and M. Oman in [2] to
linearize the problem and quickly find the solution.

We simplify our notation by letting

ν(ξ) = max {0, 2|ξ − 1/2| − 1}, (6)

and
s(x) = (c1 − f(x))2 − (c2 − f(x))2. (7)

After the substitution the functional in (5) becomes:

F (u) =
∫

D

|∇u(x)| dx+
∫

D

(
λs(x)u(x)+αν(u(x))

)
dx. (8)

This functional is non-differentiable, which we resolve by
approximating the first term with a differentiable function,
while choosing a representation for ν′ for our numerical
computations. We approximate |∇u(x)| by |∇u(x)|ε, where
|v|ε :=

√
|v|2 + ε2 for a small ε > 0. For ν′ we simply make

choices from the subgradient, and use:

ν′(ξ) =

−2, ξ < 0,
0, 0 ≤ ξ ≤ 1,
2, ξ > 1.

(9)

We obtain an Euler-Lagrange equation of (5) by setting the
(approximate) derivative of (8) equal to zero:

F ′(u) = −∇ · ∇u

|∇u|ε
+ λs + αν′ ◦ u = 0. (10)

The equation in (10) is highly nonlinear in terms of u. As
done in [2] for the ROF functional, we solve the equation
iteratively by approximating the nonlinear terms with their
values from the previous iteration:

−∇ · ∇un+1

|∇un|ε
+ λs + αν′ ◦ un = 0. (11)

If we denote L(u)v = −∇ · ∇v
|∇u|ε , the equation becomes:

L(un)un+1 + λs + αν′ ◦ un = 0. (12)

Under the assumption that un+1 would not differ much from
un we approximate (12) as:

L(un)un+1 + un+1 − un + λs + αν′ ◦ un = 0. (13)

This can also be thought of as adding and subtracting u in
(10) and then lagging one of the terms. Now we can solve for

un+1:

un+1 = (L(un) + I)−1(un − λs− αν′ ◦ un). (14)

The solution can be done without the step in (13), but this
way we ensure that the matrix we are inverting in (14) is
nonsingular, as L(u) is positive semidefinite. We can also
rewrite the iterative scheme in the following way:

un+1 = un − (L(un) + I)−1(L(un)un + λs + αν′ ◦ un)

= un − (L(un) + I)−1F ′(un).
(15)

The iteration (15) can be regarded as a quasi-Newton method
for the solution of (10), with L(u)+I being an approximation
of the second derivative F ′′(u) = L(u)+L′(u)u+ν′′ ◦u. The
reason we do not approach the problem with a real Newton’s
method, which is known to have a locally quadratic rate of
convergence, is that L′(u)u is expensive to compute and store.
The approximation L(u) + I is appropriate for the algorithm:
it is a positive definite matrix, therefore, our step direction
un+1−un is guaranteed to be a descent direction [7]. Finally,
we include a timestep, which in practice we hold constant:

un+1 = un −∆t(L(un) + I)−1F ′(un). (16)

Our numerical experiments show that the algorithm success-
fully segments images, and converges faster than the gradient
descent method.

III. RESULTS

We test the algorithm on the 256× 256 cameraman image
displayed in Figure 1. Gaussian noise with variance of 0.001
was added to the image, which causes simple thresholding
techniques to fail in segmenting it. We would like the result to
be close to a binary image. As a starting point we use the noisy
image. We first implement the gradient descent method. We
choose our parameters to achieve a satisfactory segmentation:
λ = 1000, α = 1000, γ = 0.0001. The largest working
timestep is 0.000001, and the number of iterations needed
to obtain the image in Figure 2(a) is 5000, which requires
830 s of CPU time (in MATLAB). We also implement our
quasi-Newton method (16). The appropriate timestep for this
case is ∆t = 0.1. After 200 iterations and 260 s of CPU time
the algorithm obtains the solution shown in Figure 2(b). We
display how the value of the functional changes with each
iteration for both algorithms in Figures 2(c) and 2(d). The
gradient descent method decreases the value slowly, and even
after 5000 iterations has not completely converged. On the
other hand, the quasi-Newton method makes it drop quickly to
a very small value after only 50 iterations, and then gradually
continues to improve the solution. In the end, the quasi-
Newton method’s minimum is still lower than the minimum
found by the gradient descent method. Visually, the solution
of the quasi-Newton method does not differ much from the
one achieved through the gradient descent method. Simple
thresholding of this result can convert it into a binary image
of cameraman on a white background.

We also test the algorithm on a different example in which
we try to segment a simple object from a dark background,



Fig. 1. The cameraman image with some Gaussian noise added to it:
we would like to obtain a binary segmentation in which the cameraman is
separated from the background.

but the image has been corrupted by Gaussian noise with
variance equal to 0.03 (Figures 3(a), 3(b)). It is easy for the
human eye to distinguish the object, since we possess some
intuition for the shape of the football. However, for a computer
algorithm it is difficult to correctly reconstruct the boundaries
since no prior knowledge is assumed. We attempt to segment
the image with the popular k-means algorithm which partitions
the intensity values into k clusters. Since this method does
not assume any connectivity of regions, it is very sensitive
to noise and it fails to select the shape (Figure 3(c)). The
proposed algorithm, on the other hand, is trying to preserve
the geometric information in the image. The noise increases
the amount of variation in the image, so in order to come to
a piecewise constant solution, the regularization parameter λ
needs to be smaller. This increases the number of necessary
iterations: more work needs to be done to obtain segmentation.
Since we want to be able to segment images efficiently even
when noise is present, we change the starting point from the
noisy image to a crude segmentation of it. For example, we
use the result from the k-means algorithm. We could also first
start the segmentation with a larger λ. Finally we obtain our
final result displayed in Figure 3(d) in only 40 iterations (as
opposed to 200 when starting with the noisy image). We note
that despite the noise the image is close to binary, and does
not require additional thresholding.
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[6] T. F. Chan, S. Esedoḡlu, and M. Nikolova, “Algorithms for finding global
minimizers of image segmentation and denoising models,” SIAM J. Appl.
Math., vol. 66, pp. 1632–1648, 2006.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cam-
bridge University Press, 2004.

PLACE
PHOTO
HERE

Rick Chartrand received his Ph.D. in Mathemat-
ics in 1999 from UC Berkeley, where he studied
functional analysis. He now works as an applied
mathematician at Los Alamos National Laboratory.
His research interests include compressive sensing,
image processing, and the high-dimensional geome-
try and analysis of images and data.

PLACE
PHOTO
HERE

Valentina Staneva received her B.Sc. from Concord
University in 2006. She is now a Ph.D. student in the
Applied Mathematics department at John Hopkins
University.



(a) (b)

(c) (d)

(e) (f)

Fig. 2. Segmentation results of the cameraman image obtained with: (a) a gradient descent method, and (b) our quasi-Newton method; (c) the decrease
of the functional value with each iteration of the gradient descent method; (d) the decrease of the functional value with each iteration of the quasi-Newton
method (note that s(x) in (8) can be negative, but is bounded below); (e) the relative error (‖un − uopt‖/‖uopt‖) for (c); (f) the relative error for (d).
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Fig. 3. (a) An image of a football: a simple segmentation problem. (b) A significant amount of noise is added to the image, which makes simple segmentation
techniques fail. (c) Unsuccessful segmentation of the image with the k-means algorithm. (d) Segmentation achieved through the proposed algorithm; as an
initial guess we used the poor k-means segmentation in order to reduce the number of iterations.


